一.通道注意力与空间注意力
Squeeze-and-Excitation Networks
Instantiation
CBAM: Convolutional Block Attention Module
Overview
Sub module
Grad-Cam Visualization
SKNet
自适应的选择卷积核
ECA-Net
选择邻近的k个通道做卷积
二. Nonlocal
Non-local Neural Networks
Asymmetric Non-local Neural Networks for Semantic Segmentation
考虑到图像中的一些像素点比其他点更加重要。
用SPP来降低维度,N->S。
Real-Time Semantic Segmentation With Fast Attention
Idea在Efficient Attention: Attention with Linear Complexities已经被提出。
快速的self-attention,还能扩展到Video语义分割中
核心思想:cos相似度代替softmax,改变self-attention的计算顺序
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond
结合SENet和Nonlocal,并简化。
应用:
Non-locally Enhanced Encoder-Decoder Network for Single Image De-raining
将Nonlocal用于去雨。
Efficient Image Super-Resolution Using Pixel Attention
像素级的注意力,CHW。
三.小目标识别
Small Object Detection using Context and Attention
Extend ResNet-SSD with context and attention
Feature fusion module
HRDNet: High-resolution Detection Network for Small Objects
使用不同深度的网络处理不同分辨率的图像,然后用一个多尺度金字塔来融合
MultiResolution Attention Extractor for Small Object Detection
对FPN的特征做Attention
IPG-Net: Image Pyramid Guidance Network for Small Object Detection
Coordinate Attention for Efficient Mobile Network Design
宽度与高度上attention分离
Polarized Self-Attention: Towards High-quality Pixel-wise Regression
使某个方向的特征保持高分辨率
https://zhuanlan.zhihu.com/p/392148142