计算机视觉中的注意力机制

Posted by BY Yuaika on June 5, 2021

一.通道注意力与空间注意力

Squeeze-and-Excitation Networks

Instantiation

CBAM: Convolutional Block Attention Module

Overview

Sub module

Grad-Cam Visualization

SKNet

自适应的选择卷积核

ECA-Net

选择邻近的k个通道做卷积

二. Nonlocal

Non-local Neural Networks

Asymmetric Non-local Neural Networks for Semantic Segmentation

考虑到图像中的一些像素点比其他点更加重要。

用SPP来降低维度,N->S。

Real-Time Semantic Segmentation With Fast Attention

Idea在Efficient Attention: Attention with Linear Complexities已经被提出。

快速的self-attention,还能扩展到Video语义分割中

核心思想:cos相似度代替softmax,改变self-attention的计算顺序

GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

结合SENet和Nonlocal,并简化。

应用:

Non-locally Enhanced Encoder-Decoder Network for Single Image De-raining

将Nonlocal用于去雨。

Efficient Image Super-Resolution Using Pixel Attention

像素级的注意力,CHW。

三.小目标识别

Small Object Detection using Context and Attention

Extend ResNet-SSD with context and attention

Feature fusion module

HRDNet: High-resolution Detection Network for Small Objects

使用不同深度的网络处理不同分辨率的图像,然后用一个多尺度金字塔来融合

MultiResolution Attention Extractor for Small Object Detection

对FPN的特征做Attention

IPG-Net: Image Pyramid Guidance Network for Small Object Detection

Coordinate Attention for Efficient Mobile Network Design

宽度与高度上attention分离

Polarized Self-Attention: Towards High-quality Pixel-wise Regression

使某个方向的特征保持高分辨率

https://zhuanlan.zhihu.com/p/392148142